Phase Equilibria of the System La₂O₃-NiO-Li₂O at 700, 800, and 900°C

Guobao Li,¹ Jianqing Yang, Yongxin Fan, Shujian Tian, and Chaogui Zheng

Department of Chemistry, Peking University, Beijing 100871, China

Received February 26, 1998; in revised form July 8, 1998; accepted July 14, 1998

Phase relations in the system La_2O_3 -NiO-Li₂O at 700, 800, and 900°C have been investigated by solid synthesis, X-ray diffraction analysis, and chemical analysis. Only the ternary compound La_4NiLiO_8 was found in the system. X-ray diffraction data of La_4NiLiO_8 are presented. © 1998 Academic Press

Key Words: phase relations; La₃O₃-NiO-Li₂O system; La₄NiLiO₈.

I. INTRODUCTION

The system La_2O_3 -NiO-Li₂O has been studied extensively. There are several different functional materials in this system. LiNiO₂ is a promising cathode material for the lithium ion battery (1), which now is the focus of study and development of the chemical battery. La_4NiLiO_8 is a useful catalyst for CH₄ oxidation (2), whereas the mixed oxides LaNiO₃ and La₂NiO₄ were studied as catalysts for direct decomposition of NO (3). Much published work has been focused on the above-mentioned functional materials. Are there any new functional materials in this system? Is there any new compound in this system? We are very interested in finding out the answers to these two questions. Here, we present our work on the phase relations in the system La_2O_3 -NiO-Li₂O.

II. PRIOR STUDIES

The System Li₂O-NiO

Several phase relation studies of the system Li₂O–NiO have been reported (4–7). It had been reported that there existed two solid solutions: $\text{Li}_x \text{Ni}_{2-x} O_2$ (0.56 $\ge x \ge 0$) and $\text{Li}_x \text{Ni}_{2-x} O_2$ ($1 \ge x \ge 0.6$), at 600–850°C. Their crystal systems are cubic and hexagonal, respectively. Between the two solid solutions there is narrow two-phase area. A monoclinic phase Li₂NiO_{3-y} was found by Bronger (6). It is a classic β -Li₂SnO₃-type compound and is stable at relatively low temperature (below 450°C under normal conditions or below 670°C under a 150-MPa oxygen atmosphere). A CdI₂-type compound Li₂NiO₂ can be formed by intercalating lithium into hexagonal LiNiO₂ at room temperature (8). When this compound is heated to 400°C, orthogonal Li₂NiO₂ is obtained (9). At 150–300°C, hexagonal Li_{0.5}NiO₂, formed by deintercalating lithium from hexagonal LiNiO₂ at room temperature, can be transformed to cubic spinel LiNi₂O₄ (10, 11).

The System $Li_2O-La_2O_3$

The system $\text{Li}_2\text{O}-\text{La}_2\text{O}_3$ has been reported (12–14). Sevostyanova *et al.* (12) reported the existence of the phase $\text{Li}\text{La}\text{O}_2$ with an orthogonal form which had been synthesized under an H₂ atmosphere. However, Gondrand (13) and Abbattista and Vallino reported the existence of the phase $\text{Li}\text{La}\text{O}_2$ with a monoclinic form at 800°C in air. Moreover, Attfield and Ferey synthesized a compound $\text{La}_4\text{Li}_2\text{O}_7$ with a defect K₂NiF₄-type structure at 950°C in air by solid synthesis.

The System NiO-La₂O₃

In the system NiO–La₂O₃, a stable orthogonal LaNiO₃ is formed below 800°C, which decomposes and forms members of the Ruddlesden–Popper series $La_{n+1}Ni_nO_{3n+1-\delta}$ above 825°C (16–18). It was reported that heating orthogonal LaNiO₃ at 1100°C for 30 min produced orthogonal La₄Ni₃O₁₀ (18), whereas heating for 24 h gave orthogonal La₃Ni₂O₇ (18). At 1166°C, orthogonal LaNiO₃ decomposes into tetragonal La₂NiO₄ (19).

There are many arguments about the structures and the phase transition of La₂NiO_{4+ δ}. Five phases were reported at room temperature: orthorhombic *Bmab* ($0 \le \delta \le 0.02$ (20, 21), $\delta \le 0.003$ (22)), pseudotetragonal ($\delta \approx 0.02$ orthorhombic $(0.055 \le \delta < 0.09)$ (22-24)).(22). $0.07 < \delta < 0.10$ (24)), tetragonal $P4_2/ncm$ ($\delta \approx 0.10$ (24)), tetragonal I4/mmm (0.10 $\leq \delta < 0.15$ (22), 0.14 $< \delta$ (25), and orthorhombic Fmmm (0.15 $< \delta < 0.18$ (22), 0.13 $< \delta$ (20, 21)). Furthermore, several different phase transitions were reported. Rodrigues-Carvajal et al. (25) reported two structural phase transitions for stoichiometric $La_2NiO_{4,00}$:

¹To whom correspondence should be addressed.

from tetragonal I4/mmm to orthorhombic Bmab around 497°C and from orthorhombic *Bmab* to tetragonal $P4_2/ncm$ around -193° C. Kajitani *et al.* (23, 24) reported a phase transition around -203° C for $\delta = 0$ from orthorhombic to orthorhombic and a phase transition from tetragonal $P4_2/ncm$ to tetragonal I4/mmm around 287°C at $\delta \approx 0.10$. Tranquada et al. (26) reported a phase separation around -3° C at $\delta = 0.15$. Tamura *et al.* (22) showed a phase transition from orthorhombic Fmmm to tetragonal I4/mmm with increasing transition temperature from 47°C for $\delta = 0.15$ to 157° C for $\delta = 0.18$. Finally, Kulichenko *et al.* [27] reported that $La_{2-x}NiO_{4+\delta}$ ($0 \le x \le 0.5$) could be synthesized after several hours at 950°C and that $La_{2-x}NiO_{4+\delta}$ ($0 \le x \le 0.4$) is of K_2NiF_4 -type structure (I4/mmm) and $La_{2-x}NiO_{4+\delta}$ $(0.4 < x \le 0.5)$ is of La₃Ni₂O₇-type structure.

The System La₂O₃-NiO-Li₂O

One compound, La₄NiLiO₈, was synthesized at 950°C under an oxygen atmosphere (28). It was of K_2NiF_4 -type structure, and has been extensively studied as a catalyst for oxidation of CH₄. However, indexed X-ray diffraction data are absent.

TABLE 1 Results of Determination in the System La₂O₃-NiO-Li₂O at 700°C

	Composition (mol %)					
Run	Li ₂ O	La ₂ O ₃	NiO	t (h)	Results of X-ray analysis	
A1	14.2		85.8	80	NiOss	
A2	28.0		72.0	80	LiNiO ₂ ss	
A3	33.1		66.9	80	LiNiO ₂	
A4	40.7		59.3	80	$LiNiO_2 + Li_2O$	
A5		30.0	70.0	200	$NiO + LaNiO_3$	
A6		33.33	66.67	240	LaNiO ₃	
A7		38.0	62.0	220	$LaNiO_3 + La_2O_3$	
A8		95.0	5.0	220	$LaNiO_3 + La_2O_3$	
A9	5.0	95.0		200	$La_2O_3 + LiLaO_2$	
A10	45.0	55.0		200	$La_2O_3 + LiLaO_2$	
A11	50.0	50.0		200	LiLaO ₂	
A12	27.0	28.0	45.0	180	$La_4NiLiO_8 + LiNiO_2 + Li_2O_3$	
A13	13.0	41.9	45.1	180	$La_4NiLiO_8 + NiOss$	
A14	44.0	46.6	9.4	180	$La_4NiLiO_8 + LiLaO_2 + Li_2O$	
A15	14.3	57.1	28.6	180	La ₄ NiLiO ₈	
A16	16.4	73.7	10.0	180	$La_4NiLiO_8 + LiLaO_2$	
					$+ La_2O_3$	
A17	3.0	75.0	22.0	180	$La_4NiLiO_8 + LaNiO_3$	
					$+ La_2O_3$	
A18	19.7	4.3	76.0	180	$La_4NiLiO_8 + LiNiO_2ss$	
A19	2.2	27.0	70.8	200	$La_4NiLiO_8 + NiO + LaNiO_3$	

Note: NiOss, solid solution of cubic $Li_{1-x}Ni_xO$; $LiNiO_2ss$, solid solution of hexagonal $Li_{1-x}Ni_xO_2$.

TABLE 2 Results of Determination in the System La₂O₃-NiO-Li₂O at 800°C

	Composition (mol %)					
Run	Li ₂ O	La ₂ O ₃	NiO	<i>t</i> (h)	Results of X-ray analysis	
B1	14.2		85.8	80	NiOss	
B2	28		72	80	LiNiO ₂ ss	
B3	21.3		78.7	80	LiNiO ₂ ss	
B4	33.1		66.9	80	LiNiO ₂	
B5	40.7		59.3	80	$LiNiO_2 + Li_2O$	
B6		30.0	70.0	126	$NiO + LaNi_3O_3$	
B 7		5.0	95.0	108	$NiO + LaNiO_3$	
B 8		38.0	62.0	86	$LaNiO_3 + La_2O_3$	
B9		95.0	5.0	126	$LaNiO_2 + La_2O_3$	
B10	5.0	95.0		126	$La_2O_3 + LiLaO_2$	
B11	45.0	55.0		126	$La_2O_3 + LiLaO_2$	
B12	50.0	50.0		126	LiLaO ₂	
B13	60.0	13.5	26.5	86	$La_4NiLiO_8 + LiNiO_2 + Li_2O$	
B14	2.0	4.8	93.2	86	$La_4NiLiO_8 + NiOss$	
B15	44.0	50.6	5.4	112	$La_4NiLiO_8 + LiLaO_2 + Li_2O$	
B16	14.3	57.1	28.6	90	La ₄ NiLiO ₈	
B17	55.0	35.0	10.0	90	$La_4NiLiO_8 + LiLaO_2$	
					$+ La_2O_3$	
B18	3.1	75.0	11.9	90	$La_4NiLiO_8 + LaNiO_3$	
					$+ La_2O_3$	
B19	17.0	28.0	55.0	90	La ₄ NiLiO ₈ + LiNiO ₂ ss	
B20	2.5	32.5	65.0	90	$La_4NiLiO_8 + NiO + LaNiO_3$	
B21	32.2	3.0	64.8	90	$La_4NiLiO_8 + LiNiO_2$	
B22	15	65	20	90	$La_4NiLiO_8 + LiLaO_2$	
					$+ La_2O_3$	

Note: NiOss, solid solution of cubic $\text{Li}_{1-x}\text{Ni}_x\text{O}$; LiNiO₂ss, solid solution of hexagonal $\text{Li}_{1-x}\text{Ni}_x\text{O}_2$.

III. EXPERIMENTAL

 La_2O_3 (99.99%), NiO (A.R.), and Li_2CO_3 (A.R.) were used as starting materials. Previously, Li_2CO_3 and NiO were dried at 300°C for 2 days, and La_2O_3 was dried in an electric muffle furnace at 900°C for 12 h to drive off H₂O and CO₂.

Mixtures totaling 2-3 g were weighed out precisely and then mixed into a paste with acetone using an agate mortar and pestle, dried, and prefired at 700°C for 4 h. Finally, the samples were pressed into pellets and fired in Al₂O₃ crucibles in an electric muffle furnace at a definite temperature. The mixtures were heated for different lengths of time to find out the conditions required for attaining equilibrium. After 1 day, the pellets were removed from the furnace, crushed to a fine powder, repelletted, and reheated for another 2–4 days. At the end of the heating period, samples were removed from the furnace and airquenched.

Phase analysis was carried out by X-ray powder diffraction using a D/max-2000 type diffractometer, $CuK\alpha$

 TABLE 3

 Results of Determination in the System La₂O₃-NiO-Li₂O at 900°C

	Composition (mol %)					
Run	Li ₂ O	La ₂ O ₃	NiO	<i>t</i> , (h)	Results of X-ray analysis	
C1	15.2		84.8	48	NiOss	
C2		11.9	88.1	72	$NiO + La_4Ni_3O_{10}$	
C3		66.7	33.3	72	$La_4Ni_3O_{10} + La_2O_3$	
C4	13.0	40.0	47.0	60	$La_4NiLiO_8 + NiOss$	
C5	9.0	62.0	29.0	60	$La_2O_3 + La_4NiLiO_8$ + La_4Ni_2O_10	
C6	14.3	57.1	28.6	60	$La_4 NiLiO_8$	
C7	8.0	43.0	49.0	60	$La_4NiLiO_8 + La_4Ni_3O_{10}$ + NiO	
C8	58.0	13.0	29.0	60	$La_4NiLiO_8 + Li_2O + NiOss$	
C9	44.5		55.5	48	$Li_2O + NiOss$	
C10	52.4	47.6		60	$Li_2O + La_2O_3$	
C11	20.0	58.6	21.4	60	$La_4NiLiO_8 + Li_2O + La_2O_3$	

Note: NiOss, solid solution of cubic $\text{Li}_{1-x}\text{Ni}_x\text{O}$.

radiation, a Ni filter, 40 kV, and 100 mA. Si was used as an internal standard.

The final composition of the samples was determined by ICP-AES for lithium (determination error was 5%) and chemical analysis for nickel and lanthanum (determination error of EDTA titration was 1-2%).

IV. RESULTS

Subsolidus relations in the system La_2O_3 -NiO-Li₂O were determined at 700, 800, and 900°C, respectively. The preparation conditions and results of analysis are given in

FIG 1. Phase diagram of the system La₂O₃-NiO-Li₂O at 700°C.

FIG 2. Phase diagram of the system La₂O₃-NiO-Li₂O at 800°C.

Tables 1-3; the corresponding phase relations are shown in Figs. 1-3.

The stable phases at the apices of the ternary phase diagram are Li₂O, NiO, and La₂O₃. No intermediate phase is present in the binary Li₂O–NiO at 900°C; however, stable hexagonal LiNiO₂ is formed at 800 and 700°C. Two solid solutions, cubic Li_xNi_{2-x}O₂ (0.56 > $x \ge 0$) and hexagonal Li_xNi_{2-x}O₂ ($1 \ge x > 0.6$), were found in the binary Li₂O–NiO at 800 and 700°C, and only one solid solution, cubic Li_xNi_{2-x}O₂ ($0.56 > x \ge 0$), was found at 900°C. These results agree with those reported in the literature (4–11). Hexagonal LiNiO₂ decomposes at 900°C; therefore solid solution hexagonal Li_xNi_{2-x}O₂ ($1 \ge x > 0.6$) disappears at this temperature.

FIG 3. Phase diagram of the system La₂O₃-NiO-Li₂O at 900°C.

 TABLE 4

 Indexed Diffraction Data for La4NiLiO8^a

h	k	l	$d_{\rm obs}$ (nm)	$d_{\rm cal}~({\rm nm})$	I/I_0
1	0	1	0.36056	0.36050	60
0	0	4	0.32222	0.32214	30
1	0	3	0.28271	0.28271	100
1	1	0	0.26557	0.26552	72
1	1	2	0.24557	0.24549	6
0	0	6	0.21474	0.21477	11
1	0	5	0.21247	0.21249	28
1	1	4	0.20491	0.20489	61
2	0	0	0.18776	0.18775	44
1	1	6	0.16698	0.16698	11
2	1	1	0.16650	0.16652	17
1	0	7	0.16529	0.16529	24
2	0	4	0.16221	0.16221	20
0	0	8	0.16106	0.16107	7
2	1	3	0.15640	0.15640	7
2	0	6	0.14135	0.14135	37
2	1	5	0.14069	0.14070	10
1	1	8	0.13771	0.13771	13
2	2	0	0.13275	0.13276	10
0	0	10	0.12887	0.12886	1
3	0	1	0.12458	0.12458	4
2	1	7	0.12406	0.12406	18
2	2	4	0.12275	0.12275	18
2	0	8	0.12225	0.12225	8
3	0	3	0.12017	0.12017	11
3	1	0	0.11875	0.11874	8
1	1	10	0.11592	0.11593	4
2	2	6	0.11292	0.11293	4
2	0	5	0.11260	0.11259	3
1	0	11	0.11184	0.11183	12
3	1	4	0.11142	0.11142	16

^{*a*}Unit cell: a = 0.37553(2) nm; c = 1.28872(8) nm; V = 0.18174 nm³; $d_{obs} = 7.120$ g/cm³, $d_{cal} = 7.202$ g/cm³ for Z = 1.

Monoclinic LiLaO₂ is the only intermediate phase found in this study in the system La₂O₃-Li₂O at 800 and 700°C; it decomposed at 900°C, and no intermediate phase was found in this system at 900°C. These results also agree well with those in the literature (12–15).

Orthogonal LaNiO₃ was the only intermediate phase found in the binary system La₂O₃–NiO at 800 and 700°C, and orthogonal La₄Ni₃O₁₀ was the only intermediate phase at 900°C. A phase transition between 800 and 900°C was observed. The X-ray diffraction data for La₄Ni₃O₁₀ found at 900°C were very similar to the reported data (18). La₂NiO_{4+δ} and La_{2-x}NiO_{4+δ} were not found, although several researchers (20–27) have reported their existence around 900°C. The main difference between the present work and the reported work (20–27) is the difference of synthesizing time of the samples. Our prolonged synthesizing time ensures that the samples reach the equilibrium state, and maybe the samples in Refs. (20–27) did not reach

TABLE 5Structure Refinement Parameters for La_4NiLiO_8 [14/mmm: a = 0.37553(2) nm, c = 1.28872(8) nm]

Atom	Site	x/a	y/b	c/z	Occupancy
Li	2 <i>a</i>	0	0	0	1.00
Ni	2a	0	0	0	1.00
La	4e	0	0	0.363648	1.00
O(1)	4e	0	0	0.178681	1.00
O(2)	4c	0	0.5	0	1.00
	$R_{\rm p} = 5.76$	$R_{wp} = 8.87$	$R_{\rm i} = 0.85$	$R_{\rm exp} = 4.66$	

the equilibrium state because the synthesizing times for those samples were too short.

 La_4NiLiO_8 was the only ternary compound found in the system La_2O_3 -NiO-Li₂O. It was reported to be a K₂NiF₄-type compound (28), and our results confirm that. The indexed diffraction data are in Table 4. The crystal structure was refined by the Rietveld method using the program Rietan-94 (29). In the final stages, all positional parameters, isotropic temperature factors for Li/Ni and La, and anisotropic temperature factors for O were refined. The overall site occupancies were constrained to be unity and the overall Li and Ni contents were constrained to be consistent with the formula La_4NiLiO_8 . The final parameters are listed in Table 5.

V. CONCLUDING REMARKS

1. The phase diagram of the systems La_2O_3 -NiO-Li₂O at 700-900°C has been determined for the first time.

2. It has been found that only one ternary compound, La_4NiLiO_8 , is formed in this system, and the indexed diffraction data were given.

3. The solid solutions, cubic $\text{Li}_x \text{Ni}_{2-x} \text{O}_2$ (0.56 $\ge x \ge 0$) and hexagonal $\text{Li}_x \text{Ni}_{2-x} \text{O}_2$ (1 $\ge x \ge 0.6$), were found at 700-800°C, and only one solid solution, cubic $\text{Li}_x \text{Ni}_{2-x} \text{O}_2$ (0.56 $> x \ge 0$), was found at 900°C.

4. Monoclinic LiLaO₂ and hexagonal LiNiO₂ are found between 700 and 800°C, but both of them decompose above 900°C.

5. Orthogonal LaNiO₃ is stable between 700 and 800°C and changes to orthogonal La₄Ni₃O₁₀ at 900°C.

REFERENCES

- T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochem. Soc. 140, 1862 (1993).
- Q. Miao, G. Xiong, X. Li, W. Chu, S. Sheng, W. Cui, and X. Guo, *Cuihua Xuebao* 17, 371 (1996).
- 3. Z. Zhao, X. Yang, and Y. Wu, Appl. Catal. B 8, 281 (1996).

- J. B. Goodenough, D. G. Wickham, and W. J. Croft, J. Phys. Chem. Solids 5, 107 (1958).
- J. B. Goodenough, D. G. Wickham, and W. J. Croft, J. Appl. Phys. 29, 382 (1958).
- V. W. Bronger, H. Bade, and W. Klemm, Z. Anorg. Allg. Chem. 333, 188 (1964).
- 7. R. J. Moore and J. White, J. Mater. Sci. 9, 1401 (1974).
- I. Davidson, J. W. Greedan, U. Von Sacken, C. A. Michal, and J. R. Dahn, *Solid State Ionics* 46, 243 (1991).
- 9. H. Rieck and R. Hoppe, Z. Anorg. Allg. Chem. 392, 193 (1972).
- M. G. S. R. Thomas, W. I. F. David, and J. B. Goodenough, *Mater. Res. Bull.* 20, 1137 (1985).
- G. Dutta, A. Manthiram, and J. B. Goodenough, J. Solid State Chem. 96, 123 (1992).
- 12. Sevostyanova, Muraveva, Kovba, and Martinenkom, *Dokl. Chem.* 161, 396 (1965).
- 13. M. Gondrand, Bull. Soc. Fr. Mineral. Cristallogr. 90, 107 (1967).
- 14. F. Abbattista and Vallino, Ceram. Int. 9, (1983).
- 15. J. P. Attfield and G. Ferey, J. Solid State Chem. 80, 112 (1989).
- Z. Zhang, M. Greenblatt, and J. B. Goodenough, J. Solid State Chem. 108, 402 (1994).
- 17. A. N. Petrov et al., J Solid State Chem. 77, 1 (1988).

- 18. C. Brisi et al., J. Less-Common Met. 79, 215 (1981).
- H. Wustenberg, Hahn Inst. für Kristallogr. Technische Hochsch., Aachen, Germany, JCPDS Grant-in-Aid Report, 1981.
- B. Dabrowski, J. D. Jorgensen, D. G. Hinks, S. Pei, D. R. Richards, H. B. Vanfleet, and D. L. Decker, *Physica C* 162–164, 99 (1989).
- J. D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards, and D. G. Hinks, *Phys. Rev. B* 40, 2187 (1988).
- 22. H. Tamura, A. Hayashi, and Y. Ueda, Physica C 216, 83 (1993).
- 23. Kajitani, S. Hosoya, M. Hirabayashi, T. Fukuda, and T. Onozuka, J. Phys. Soc. Jpn. 58, 3616 (1989).
- 24. T. Kajitani, Y. Kitagaki, K. Hiraga, S. Hosoya, T. Fukuda, Y. Yamaguchi, S. Wada, S. Sugai, Y. Morii, K. Fuchizaki, and S. Funahashi, *Physica C* 185–189, 579 (1991).
- 25. J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, and J. J. Martinez, J. Phys. Condens. Matter 3, 3215 (1991).
- J. M. Tranquada, D. J. Buttrey, and D. E. Rice, *Phys. Rev. Lett.* 70, 445 (1993).
- V. A. Kulichenko, S. A. Nedil'ko, and A. G. Dzyaz'ko, Ukr. Khim. Zh. 62, 7 (1996).
- 28. G. Blasse, J. Inorg. Nucl. Chem. 27, 2683 (1965).
- 29. Y.-I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994).